A General Morphological Framework for Perceptual Texture

Discrimination based on Granulometries

Maria Vanrell, F. Xavier Roca and Jordi Vitria
Computer Vision Group - Departament d’Informatica - Universitat Autonoma de Barcelona
08198 Bellaterra (Barcelona) Spain - Faz:(3)5811670 e-mail:iinf9@ccuabl.uab.es Tel:(3)5812166

Abstract

Reviewing the works on texture discrimination in computer vision, we can distinguish two different ap-
proximations, a first one based on the mathematical modelization of textures, and a second one focused in
finding measures which fit human perception models. Our work is centred in the second line, concretely,
in the models based on texton theory. These works base texture discrimination on differences in density
of textons attributes. We link this approach with a morphological tool, granulometry, as a helpful multi-
scale analysis of image particles. The granulometric measurement provides a density function of a given
feature, which depends on the family of algebraic openings selected. Thus in this paper we define different
granulometries which allow us to measure the main texton features, such as, shape, size, orientation or
contrast. Proposing a granulometric analysis as a general tool for texture discrimination accordingly with
a perceptual theory. We finally present a practical application of measuring size density on radiographic

images suffering from pneumoconiosis.

1 Introduction

First of all we present a brief review of works on
texture discrimination. We draw our attention to
those works which intend to be a general model for
pre-attentive texture discrimination and whose re-
sults agree with human visual perception. In this
sense we mainly start from works following texton
theory based on differences in the density of textons
L attributes.

Secondly we introduce a classical tool in Mathe-
matical Morphology, the granulometry. The axioms
given by Matheron [19], to formalize a granulome-
try, deal with a multi-scale image filtering analysis
([16, 7, 14]). The multi-scale approach has provided
interesting results in various fields of computer vi-
sion. The granulometric measurement provides a
density function of a given feature, which depends
on the family of algebraic openings selected to per-
form the multi-scale analysis.

Consequently we define different granulometries
which will allow us to measure the main features of
image particles. We show some examples on natural
images taken from [2]. And finally we present a
texture perception problem on radiographic images
where a classification based on the size of particles
is required.

LParticles

2 Perceptual Texture Discri-
mination

Texture discrimination is an important area in
Computer Vision. An important treatment of this
topic is the one based on the use of mathemati-
cal models capable of describing and, normally, to
synthesize a textured image, considering image tex-
ture as a particular result of that model [3]. In this
sense Mathematical Morphology has provided out-
standing models as the Boolean model or the Dead
Leaves Functions models [9, 20].

The second approach uses image measurements
based on perceptual considerations. Early works
tried to define measures whose behaviour agreed
with the perceptual description of a textural prop-
erty [8, 24]. Among these methods we can find the
statistical approach, oriented to statistical proper-
ties at the pixel level, and the structural approach
aimed to extract structures or region features of im-
ages [6]. The psycho-physical studies performed by
Julesz [10, 13, 12, 11] culminated in the well-known
texton theory — which agrees with the Marr’s Pri-
mal Sketch [17, 18]. Recently a general computa-
tional model based on perceptual considerations has
been presented in [15]. This model intends to be
consistent with physiological mechanisms of early
vision and its results match psychophysical data.
In all cases it is assumed that pre-attentive® texture

2Differences between attentive and pre-attentive vision



discrimination depends on differences in the density
of textons, called blobs by Marr, as well as on their
attributes — orientation, shape, size or contrast.

These blobs are regarded as image regions which
are either brighter or darker than the background.
These have been defined as the duals of edges in
[26, 27], or the regions associated with a (at least
one) local extremum point in [14].

Some works treat the problem of measuring the
density of blobs attributes. H. Voorhees and T.
Poggio [27] propose a general blob detection and a
posterior attribute measurement for each detected
blob. Once the measurements are made, we obtain
the distributions of attributes which can be com-
pared in order to discriminate.

Another important contribution comes from R.
Vistnes [25] who proposes computing attribute dis-
tributions without isolating image substructures, or
blobs, provided that the existence of such image
structures is uncertain in a statistical sense. Thus
he proposes to test statistically the hypothesis that
a structure with a particular feature value exists in
a image, then to estimate a feature histogram is
made by combining different attributes values. In
other words, to estimate histograms of edge orien-
tation he would compute orientation detectors in
several directions.

Out of this last point of wiew we propose some
morphological tools to obtain approximations of
blob attributes densities. Heretofore we will use
the term particle, more common in morphological
processing, in the same sense as blob or texton.

3 Granulometry

A granulometry is a generic method based on a siev-
ing process used to calculate size distributions of
particles of certain materials. Matheron’s formal-
ization [19] allowed its use in image analysis. He
defined the axioms to be accomplished by a family
of transformations to suit granulometry calculation:

Definition 3.1 A family of parametric transfor-
mations {Px} in A > 0 allows calculating a gran-
ulometry if

1. YA > 0, ¢y is an algebraic opening,

2. Stability of the parameters is acccomplished

QS)\ o qu = qu o ¢>\ = QSSup(u,)\) VA:,U >0 (1)
where an algebraic opening is defined as:

Definition 3.2 An algebraic opening is any map-
ping ¢ : F — F fulfilling the following azioms:

are fairly well explained by Julesz in [10]

(i) Antiextensivity

o(f) < f

(i) Preservation of order, or increase

[ <g= ¢(f) < 9(g)

(iii) Idempotence

(4)

Serra and Vincent’s work [23] presents a non-
exhaustive catalogue of openings. There are four
main types of openings: morphological openings,
trivial openings, connected openings and envelope
openings. From these types and by cross-union of
various types, we can define a large number of dif-
ferent algebraic openings.

Considering f(z,y) and g(x,y) as finite-support
greytone image functions, defined in Z? and ordered
by the following relation

f<ge flzy) <g(zy)

V(z,y) ()

we can construct several families of transformations
suitable to calculate a granulometry on an image.

In short, a granulometry is based essentially on
a sieving process and provides a size distribution of
particles. Nevertheless, we are working on abstract
sieves, which not only provide information on size
but also on other features of particles. One of the
goals of this work was to link the granulometry to
first order statistics® of textural features. So, we
propose to interpretate what we measure on parti-
cles as texton attributes.

To calculate a granulometry we firstly have to
describe the opening, normally depending on a pa-
rameter b — the structuring element if the opening
is based on morphological transformations —, and
the parameters that define the transformation fam-
ily. This selection depends on the blob feature mea-
sured.

Once we have applied the transformations to the
image, one must calculate the granulometric curve,
we will name it GC¢(p, b(p)). This curve is a feature
distribution function:

60500 = - D (©)

where M represents a measure, which can be any
Lebesgue measure, and 7 corresponds to a normal-
ization parameter, in such a way that

p>0

3The term first order statistics of a feature are used by
Julesz as a density of the feature on the image
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Figure 1: (1), (2) and (3) are the original images. (l.a), (1.b), (1.c) and (1.d) are the granulometric
curves with a linear structuring element in a given direction 0°,45°,90° and 135°, respectively.

/0 TGO b)dp =1 (7)

A discrete formulation of the expression above,
assuming finite difference as a derivative approxi-
mation, is obtained by

GO (p.b) = % (M) = M(8,(f) p=0 (8)

where 1) = M(f) — M(¢p,,.. (f))-
Once we have defined the granulometry, next, we

will show how to aproximately design specific gran-
ulometries in order to calculate different textural
features.

4 Size

By definition, a granulometry is a generic method
to calculate size distribution of particles. By com-
puting a granulometry on an image we obtain an
approximation of the probability to see a particle
of a given size in the image. It is not easy to define
the meaning of size as Serra in [21] states. In our
case we constrained the concept to individualized
particles. Here particle size is very related to its
shape, that is, given a particle shape one can easily
find a good size descriptor for it.

If we know the a priori shape of particles, we can
define a granulometry using a family of morfologi-
cal openings with a structuring element accordingly
with the particles shape. The structuring element
b(p) has an associated parameter p to define the size



or scale of b.

In the event of not knowing the shape of the par-
ticle, we can use the inside longest straight distance
between any two points. We can obtain this mea-
sure computing a granulometry by a family of alge-
braic openings defined as the supremum of morpho-
logical openings with linear structuring elements in
the main directions, these are denoted by By

o(f) = sgp((feb(p))G%b(p)) =

= sl;p((f © pBg) © pBy)

9)

In figure 3 we show some results of applying this
algebraic opening® to a set of images with particles
of various sizes.

5 Shape

Measuring or describing shape of particles is an im-
portant problem. P. Maragos studied it in depth
in [16] and defined a shape-size descriptor called
pattern spectrum. He also demonstrated the abil-
ity of the pattern spectrum to measure shape-size
relation.

The pattern spectrum is given by

dA((ferg) &rg)

PSf(T', g) = - dT'

r>0 (10)

hence we can directly relate it to a granulometric
curve

PSg(r,g) = —n-GCy(r,b(r)) (11)

where b(r) = r - g and

f(z)dz

Rm

(12)

Therefore the morphological opening has proved
to be a good opening to describe shape. In this
case b(r) represents a structuring element of a given
shape and scale r, it will determine the behaviour
of the morphological opening with respect to the
shape of the image particles.

As we have seen either PS as GS are functions
depending on two parameters: scale r, and function
b(r). By fixing this last one we have a classical
granulometric curve for a given structuring element,
but varying both r and b(r) we obtain the called full
pattern spectrum in [16], as a complete shape-size
descriptor.

4Serra in [22] demonstrates that the supremum of a family
of algebraic openings is also an algebraic opening

In short, a set of granulometries can be a good
complete descriptor of shape. We will apply these
concepts to other specific granulometries in order
to obtain complete feature-size descriptors.

6 Orientation

Defining the orientation of a given blob consists in
determining how the blob lies in the field of view,
we have to assume that it is an elongated blob®.
Thus the orientation of the object is defined by the
orientation of the axis of elongation. Usually it has
been computed choosing the axis of least second
moment [1]. To identify a particular line in an im-
age we need to specify an angle and a distance from
a x-y coordinate system.

Considering that we do not detect the blob, we
will measure the distribution of orientation directly
on the image — following the Vistnes’s model. Us-
ing a granulometry we can compute the probability
to find a particle of any size with an axis of elonga-
tion in a given orientation. It can be obtained by
defining a family of morphological openings with a
linear structuring element in a given direction 6, as
By defined in section 4.

In the same way we need a x-y coordinate sys-
tem to describe orientation, we will need more than
one granulometric curve for a complete orienta-
tion description. Since each of them describe the
orientation-size relation for a given direction, we de-
fine a complete orientation-size descriptor by group-
ing a set, of granulometries, which provides the prob-
ability to find a particle in a given direction with
regard to its scale or size. From this standpoint we
show in figure 1 some images where a group of four
granulometries has been measured, in order to give
a full description of the predominant orientation of
image particles. All of them present a global max-
imum at the first sizes, but the differences of their
maximum values depend on the predominant orien-
tation of image blobs. Therefore we can say that
the smaller values of these maxima indicate which
is the predominant orientation.

7 Contrast

In [27] has been demostrated that the constrast of
a blob is a good blob attribute for texture discrim-
ination. A review of the literature reveals that ob-
taining an approximation for the density of contrast
values of blobs, without a previous blob detection,
is a non trivial problem.

5Elongated blobs have been named bars by Marr
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Figure 2: (a), (b) and (c) are the original images. (d), (e) and (f) are the three corrresponding granulo-

metric curves.

The foregoing problem is illustraded by M. Gri-
maud in [5]. There, he presents an important
reviewing of the classical primitives for contrast
measurement as Rh-maxima or h-maxima, showing
their main problems. He shows the weakness of the
Rh-maxima in front of noise, and the non stability
of parameters in a family of h-maxima transforma-
tions. Nevertheless, in the same work he offers a
new measure, the dynamic of the extrema which al-
lows to work in terms of contrast without regard to
the size or shape of the substructures. It would be
an interesting measure in order to construct a fam-
ily of transformations, for granulometric purposes,
based on a geodesic reconstruction of extrema with
a dynamic value greater than a given h. However
these transformation do not satisfy the increasing
property, which is required to be suitable for a gran-
ulometry.

In view of these considerations we have not
a good algebraic opening for contrast measuring.
Even though, we show the granulometric curves ob-
tained from applying a family of algebraic openings
constructed by a geodesic reconstruction of image
maxima which are greater than a h value (see figure
2). Consequently we obtain a density distribution
of the intensity value of the image maxima. Which
is a measurement at the pixel level, and does not
supply us with enough information of the particles
as image substructures.

8 Practical Application

We have calculated a series of granulometric mea-
sures on a set, of chest radiographic images suffering
from pneumoconiosis (See figure 3). This disease
manifests itself as small opacities appearing on the
radiographs and forming a certain textural pattern
of bright blobs. The radiologist classifies the im-
ages according to a size criteria of the opacities —
large, medium or small. They may classify a large
number of images in a short time, thus this seems
to be a preattentive perception problem.
Considering that an image has just one predomi-
nant size of opacities. On these images we have cal-
culated the size density distribution. The algebraic
opening applied in order to construct the granulo-
metric curve is the supremum of linear structuring
elements as defined in figure 10, with four predom-
inant directions (6 = 0°,45°,90°,135°). The choice
of this opening is due to their robustness at detect-
ing the main diameter of the opacity, since the blobs
are not perfectly rounded. The results show some
granulometric curves in figure 3 where we can see a
maximum, in the corresponding size interval.

9 Concluding Remarks

In this paper we have presented a general frame-
work for texture discrimination based on the gran-
ulometric approach. We have shown some examples
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Figure 3: (a), (b) and (c) are radiographic images showing a textural pattern produced by rounded
opacities of small, medium and large size, respectively. (d), (e) and (f) are the three corrresponding

granulometric curves.

on how to construct granulometries. These enable
us to estimate different attributes of local features,
such as orientation, shape, size or contrast, in the
framework of texton theory.

For this purpose we have extended the concept
of full pattern spectrum [16], to an orientation-size
descriptor. And we have used the classic granulom-
etry as a tool to compute size density of particles.
Finally we have exposed the problems in finding a
good algebraic opening to measure the density of
blobs contrast, whereas we have shown some works
wich can help in defining such a transformation. For
a complete framework we can introduce the concept
of local granulometric size distributions exposed in
[4] for segmentation purposes.
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